-
1 initial tangent point
English-German dictionary of Architecture and Construction > initial tangent point
См. также в других словарях:
Tangent cone — In geometry, the tangent cone is a generalization of the notion of the tangent space to a manifold to the case of certain spaces with singularities. Definition in convex geometry Let K be a closed convex subset of a real vector space V and part;… … Wikipedia
tangent — /tan jeuhnt/, adj. 1. in immediate physical contact; touching. 2. Geom. a. touching at a single point, as a tangent in relation to a curve or surface. b. in contact along a single line or element, as a plane with a cylinder. 3. tangential (def.… … Universalium
Référentiel galiléen tangent — En mécanique newtonienne, la loi du Principe d inertie fait jouer le même rôle à toute la classe des référentiel galiléens, de vitesses relatives uniformes. Dès l époque de Torricelli, l idée d utiliser LE référentiel galiléen tangent devient… … Wikipédia en Français
Théorème du point fixe de Brouwer — En 1886 Henri Poincaré démontre un résultat équivalent au théorème du point fixe de Brouwer. L énoncé exact est prouvé pour la dimension trois par Piers Bohl pour la première fois en 1904, puis par Jacques Hadamard dans le cas général en 1910.… … Wikipédia en Français
Three point flexural test — The three point bending flexural test provides values for the modulus of elasticityin bending E B, flexural stress sigma f, flexural strainepsilon f and the flexural stress strain response of thematerial. The main advantage of a three point… … Wikipedia
Problem of Apollonius — In Euclidean plane geometry, Apollonius problem is to construct circles that are tangent to three given circles in a plane (Figure 1); two circles are tangent if they touch at a single point. Apollonius of Perga (ca. 262 BC ndash; ca. 190 BC)… … Wikipedia
Special cases of Apollonius' problem — In Euclidean geometry, Apollonius problem is to construct all the circles that are tangent to three given circles. Limiting cases of Apollonius problem are those in which at least one of the given circles is a point or line, i.e., is a circle of… … Wikipedia
Cue sports techniques — Illustration from Michael Phelan s 1859 book, The Game of Billiards Cue sports techniques (usually more specific, e.g., billiards techniques, snooker techniques) are an immensely important aspect of game play in the various cue sports such as… … Wikipedia
Parallel transport — In geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent bundle), then this connection… … Wikipedia
Euler spiral — A double end Euler spiral. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). Euler spirals are also commonly referred to as spiros,… … Wikipedia
Torsion tensor — In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet Serret formulas, for instance, quantifies the twist of a curve… … Wikipedia